近年來,諸多家電、科技企業(yè)紛紛下場布局智能家居系統(tǒng)建設(shè),智能家居產(chǎn)業(yè)已逐步實現(xiàn)從單一家電智能到全屋智能的跨越。比如基于傳感器、物聯(lián)網(wǎng)技術(shù)應用,現(xiàn)代化的智能家居系統(tǒng)可以實現(xiàn)諸多家庭內(nèi)部設(shè)備、車輛和外部城市基礎(chǔ)設(shè)施的互聯(lián)互通;基于人工智能技術(shù)更好地理解用戶需求和習慣,以此提供更個性化、智能化的服務(wù)。同時,用戶還可以通過智能家居平臺不斷拓展新的創(chuàng)新應用,如環(huán)境監(jiān)測、能耗監(jiān)測、健康管理功能等。
而落地到實際應用中,嵌入式計算機作為智能家居系統(tǒng)的核心組成,必須具備更強大的數(shù)據(jù)處理能力、可擴展性、安全性能等,滿足消費者對智能家居系統(tǒng)多智能設(shè)備互聯(lián)互通、個性化定制和隱私保護的需求。
02適用于智能家居系統(tǒng)的EM6412I
華北工控是行業(yè)專用嵌入式計算機產(chǎn)品提供商,可以為多行業(yè)領(lǐng)域客戶提供X86架構(gòu)和ARM架構(gòu)多樣化嵌入式主板、嵌入式準系統(tǒng)/整機和工業(yè)平板電腦產(chǎn)品及客制化服務(wù),此次推出的基于Intel Celeron J6412處理器的嵌入式主板EM6412I,完全滿足智能家居系統(tǒng)的應用需求。
EM6412I滿足智能家居系統(tǒng)對高性能計算、高速緩存和大容量存儲的需求:
? 支持Intel Celeron J6412處理器,TDP up to 10W,具有4核4線程,基本頻率2.0Ghz,大可提升至2.6 GHz,可以在低功耗的條件下實現(xiàn)高效處理;
? 支持2*SODIMM 內(nèi)存插槽,支持DDR4 2400/3200MHz,高可達32GB運行內(nèi)存;
? 支持1*SATA3.0、1*M.2(MKEY 2280 PCIE X2信號)接入PCIe協(xié)議的SSD和1*MiniPCIe(支持SATA信號)擴展MSATA,以此實現(xiàn)高速緩存和增大存儲容量。
EM6412I配置了豐富的功能接口,可以實現(xiàn)智能家居系統(tǒng)多智能設(shè)備的互聯(lián)互通及其他擴展應用:
? 支持2*LAN 100/1000Mbps RJ45;
? 支持6*RS232、10*USB2.0和2*USB3.0接口;
? 支持1*MiniPCIe(支持PCIE/USB信號)擴展WIFI/BT/3G/4G模塊;
? 支持1*HDMI、1*LVDS、2*VGA多種顯示接口獨立多顯和高4K分辨率顯示;
? 支持1*Mic_in,1*LINE_OUT外露,2*5PIN 2.0mm小白座引出1*MIC、1*LINEIN、2*speaker喇叭(6W/通道 8歐姆),以及1*3PIN 1.25MM小白座引出1*LINEIN,兼容支持多種音頻設(shè)備的功放需求;
? 支持1*PCIe x4插槽(支持PCIE X2信號);
? 支持1*PCIe x1 插槽(支持PCIE X1信號);
? 支持1*CPUFAN(支持調(diào)速)、1*SYSFAN、8*GPIO、1*PS2 KBMS實現(xiàn)更多擴展應用;
? 支持1*JFP 2X4PIN 2.0MM小白座引出電源燈/硬盤燈/蜂鳴器/開關(guān)方便用戶使用。
EM6412I滿足智能家居系統(tǒng)對低功耗、高可靠性和易于部署的需求:
? 支持1*TPM(可選)生成、存儲和管理加密密鑰提供增強的安全性能;
? 支持Windows 10/11、Linux操作系統(tǒng),開發(fā)了看門狗功能,可以為用戶提供更高安全性的計算機系統(tǒng)運行環(huán)境;
? 支持ATX電源供電,低功耗、輸出穩(wěn)定;
? 具備抗電磁干擾、防塵、防潮、0℃~60℃寬溫作業(yè)等工業(yè)級耐用性;
? 尺寸為170mm x 170mm,小體積,更易于部署。
Shaft current is one of the common problems in high-voltage motors, generators, variable frequency motors, and other types of motors. When the shaft current is high, it can cause the bearing system of the motor to collapse, even affecting the motor winding. Therefore, the control of shaft current is a common concern for motor manufacturers and even users.
A netizen suggested that he detected the shaft voltage and asked if it is possible to measure the shaft current? We will have a brief discussion on whether shaft voltage will harm the bearing system of the motor and other related issues.
From the analysis of the principle of current formation, shaft voltage and closed circuit are necessary conditions for generating shaft current. The measures to avoid shaft current are based on two ideas: cutting off the circuit or bypassing it.
If circuit breaking measures such as insulated bearings, insulated end caps, and insulated bearing sleeves are used in the design and manufacturing process of the motor, even if the shaft voltage exists, because no closed circuit can be formed, the shaft current will naturally not be generated.
If a bypass measure is adopted, that is, guiding the direction of shaft current through grounded carbon brushes, it can greatly reduce the magnitude of shaft current and naturally solve the problem of shaft current harm to bearings.
We are now discussing another issue, which is raised by the netizen. When the shaft voltage is high, it will pose a threat to the quality and performance of bearings. Therefore, necessary measures need to be taken when the shaft voltage is high! According to the accumulation and statistics of data from different motor manufacturers, when the shaft voltage generated by the motor does not exceed 350mV, it does not have a significant impact on the bearing system of the motor. Otherwise, corresponding avoidance measures must be taken.
Finally, let's talk about the detection of shaft voltage and shaft current. Relatively speaking, the detection of shaft voltage is relatively simple, and can be detected using a millivolt meter with appropriate accuracy. However, due to the irregularity of the shaft current passing through the channel, the collection of shaft current is relatively difficult, and specialized detection equipment is needed for detection.
The shaft current monitoring device adopts a high-performance microcontroller as the core control component to form a controller, and a hollow ring transformer as the shaft current sensor to monitor the changes in motor shaft current. The microcontroller monitors the real-time change value of the shaft current sensor, which is linearly related to the large shaft current. After filtering and numerical transformation, it is confirmed that the shaft current exceeds the set value. The shaft current monitoring device outputs a second level alarm signal. The device displays the specific current size in real-time through parameter tuning.